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Introduction

The heart is the first organ to form in the developing embryo to 
ensure distribution of nutrients and oxygen during fetal develop-
ment.1 Cardiogenesis is a complex process of highly coordinated 

events that include heart tube formation and looping, chamber 
septation, and maturation. The complexity of heart development 
is reflected by the high occurrence of congenital heart disease 
(CHD), which appear in almost 1% of all live births, thereby 
comprising the most common congenital disorder. Despite 
increasing knowledge and therapeutic advances, CHD causes 
10% of all noninfectious infant deaths within the first year of 
life.2,3 The spectrum of CHD is broad and patients may have 
more than one heart abnormality. CHD can be characterized by 
multifaceted morphological and structural abnormalities includ-
ing septal and valve defects, tetralogy of Fallot (TOF) and arte-
rial transposition.4,5 CHD prognosis and mortality depend on the 
size, number, and type of defect(s) and the associated abnormali-
ties.2 An overview of common types of heart defects and their 
morphological characteristics is given in Table 1.

Throughout heart development, different types of cilia are 
expressed in a spatiotemporal manner to control various aspects 
of cardiogenesis. During gastrulation, motile and sensory cilia 
at the embryonic node (Fig. 1A) play a critical role in regulat-
ing signaling processes required for the establishment of left-
right (L-R) organ asymmetry, a process which controls the 
initial stages of heart morphogenesis and connections to the 
vasculature.6-10 Consequently, defects in L-R signaling result in 
a variety of heart defects that arise from abnormal looping and 
remodeling of the primitive heart tube into a multi-chambered 
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Primary cilia are unique sensory organelles that coordi-
nate a wide variety of different signaling pathways to control 
cellular processes during development and in tissue homeo-
stasis. Defects in function or assembly of these antenna-like 
structures are therefore associated with a broad range of 
developmental disorders and diseases called ciliopathies. 
Recent studies have indicated a major role of different popu-
lations of cilia, including nodal and cardiac primary cilia, in 
coordinating heart development, and defects in these cilia are 
associated with congenital heart disease. Here, we present an 
overview of the role of nodal and cardiac primary cilia in heart 
development.
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organ.11-19 In addition, primary cilia that are present in cardio-
myocytes and within the developing heart, also known as cardiac 
primary cilia (Fig. 1B), are compartmentalized with a series of 
receptor systems,20-22 which take part in regulating cellular sig-
naling pathways important for the progressive differentiation, 
morphogenesis and maturation of the heart. This suggests that 
also cardiac primary cilia play a role in coordinating the signaling 
networks that are required for proper heart development. Here 
we present an overview of cilia, ciliopathies and heart develop-
ment with focus on recent advances in understanding the role of 
different populations of cilia in coordinating signaling networks 
during heart development, and we discuss how defects in ciliary 
formation, motility, and sensory reception may lead to CHD.

Cilia, Ciliopathies and CHD—An Overview

Cilia are membrane-bound, microtubule-based organelles that 
play important roles in motility and sensation. Cilia project from 
the surface of most animal cells, from protists to humans.23 In 
vertebrates, cilia are generally divided into two types according 
to their axonemal arrangement and ability to engage active move-
ment. Axonemes in multiciliated cells of mammalian epithelia 
(e.g., in brain ventricles, oviduct, and airways) usually have a 9+2 
composition of microtubules, possess dynein arms, radial spokes, 
and are motile. Ciliary motility is regulated by outer (ODA) and 
inner (IDA) dynein arms that control ciliary beat frequency and 
form, respectively, and power the movement of fluid or substances 

over an epithelium. In contrast, non-motile primary cilia, which 
are found in a single copy on the surface of most quiescent cells 
in the body, usually have a 9+0 microtubule composition and 
lack dynein arms and radial spokes.23 Both motile and primary 
cilia are subtended by a modified centriole called the basal body, 
which for primary cilia corresponds to the most mature (mother) 
centriole of the centrosome (Fig. 1B), and rely on intraflagel-
lar transport (IFT) for their assembly, length, maintenance, and 
signaling properties. IFT is a specialized bidirectional trafficking 
system with motor molecules, IFT complexes, and other adap-
tor proteins that move axonemal precursors (e.g., tubulin) and 
certain ciliary membrane proteins into and out of the cilium.24 
Canonical anterograde transport of proteins from the ciliary base 
to the tip is mediated by the heterotrimeric kinesin-2 motor pro-
tein, comprising Kif3a, Kif3b and Kap, whereas retrograde IFT 
is mediated by cytoplasmic dynein-2.25,26

Primary cilia play fundamental roles as chemo- and mecha-
nosensory organelles and coordinate numerous signaling path-
ways, including the Hedgehog (Hh), Wingless-type Integration 
site (Wnt), Receptor Tyrosine Kinase (RTK), Notch, and 
Transforming Growth Factor β (TGFβ) signaling systems, as 
well as signaling through receptors for extracellular matrix pro-
teins, ion channels, and a wide variety of different G-protein 
coupled receptors (GPCRs). By these means, primary cilia 
control cellular processes during development and in the adult 
organism.20,27-36 In addition, specialized non-motile sensory cilia 
are present on neurons in the olfactory epithelium of the nasal 

Table 1. Common types of congenital heart defects

Congenital heart defect Abbreviation Characteristics

Aortic stenosis AoS
Obstruction of blood flow between left ventricle and the aorta. This may be caused by abnormali-
ties of the aortic valve (aortic valve stenosis, AvS), muscular obstruction or narrowing of the aorta 

immediately above the valve.

Atrial septal defect ASD incomplete septation of the atria.

Atrioventricular septal 
defect

AvSD
Developmental defects that arise from developmental defects of the endocardial cushions. Such 

defects affect may affect the lower part of the atrial septum, the ventricular septum and the mitral 
and tricuspid valves.

Coarctation of the aorta CoA A narrowing of the aorta.

Hypoplastic left heart 
syndrome

HLHS
All structures of the left side of the heart, including the left ventricle, mitral and aortic valves, are 

severely underdeveloped.

Patent ductus arteriosus PDA
Failure of closure of the ductus arteriosus (DA) at birth. DA is a blood vessel which allows passage 

between the pulmonary artery and the aorta. This passage allows bypass of the lungs in fetal circula-
tion.

Persistent left superior 
vena cava

PLSvC Failure of obliteration of the left superior vein.

Transposition of the great 
arteries

TGA
The aorta and pulmonary artery are reversed, so that the aorta arises from the right ventricle and 

the pulmonary artery arises from the left ventricle. The result is that there is no connection between 
systemic and pulmonary circulation.

Tetralogy of Fallot TOF

involves four anatomical abnormalities in the heart:
1) ventricular septal defect (hole between ventricles)
2) Pulmonary stenosis (pulmonary artery is narrow)

3) Overriding aorta (the aorta is positioned between the two ventricles)
4) Hypertrophic (thickening of ) right ventricle.

ventricular septal defect vSD incomplete septation of the ventricles.

information from Cincinnati Childrens Hospital. Heart institute encyclopedia. http://www.cincinnatichildrens.org and American Heart Association. About 
congenital heart diseases. www.heart.org.
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cavity and on photoreceptor cells.37,38 Lastly, motile (nodal) cilia 
with ODA, also known as Left-Right dynein (LRD), are found 
during gastrulation at the embryonic node (Fig. 1A) and play a 
decisive role in laterality establishment.6,39 These cilia were orig-
inally reported to display 9+0 axonemes,8 but nodal cilia with a 
9+2 and even 9+4 axonemal structures have also been found in 
mouse, rabbit,40,41 and zebrafish.42 Thus, motile as well as non-
motile cilia with variable architecture of axonemal microtubules 
are present in multiple tissues and organs throughout the body 
where they regulate key events during development and in the 
adult. Therefore, defects in genes required for ciliary assem-
bly, maintenance, motility, and/or sensory functions may lead 
to a series of syndromic diseases and developmental disorders 
referred to as ciliopathies. The clinical features of ciliopathies 
include laterality defects, airway dysfunction, sterility, cognitive 
disorders, skeletal bone, renal, hepatic, pancreatic, and brain 
defects, retinal degeneration, anosmia, obesity, and cancer.43-46

The multifaceted diseases and developmental defects asso-
ciated with dysfunctional cilia reflect the complexity and 
importance of these organelles throughout life. Most impor-
tantly, defective cilia are also associated with CHD. Heart 
defects are observed in several ciliopathy syndromes, including 

Alström syndrome (ALMS), Bardet-Biedl syndrome (BBS), 
Meckel syndrome (MKS), Dandy-Walker syndrome (DWS), 
Joubert syndrome (JBTS), Ellis-van Creveld syndrome (EVC), 
McKusick-Kaufman syndrome (MKKS), Short-rib polydactyly 
syndromes (SRPS), Sensenbrenner syndrome (SS), and nephro-
nophthisis (NPHP) (Table 2). In many cases, ciliopathy-associ-
ated CHDs display the typical heart defects observed in patients 
with laterality defects, yet several other types of CHD have been 
reported in ciliopathy patients, including septum defects, and 
aortic stenosis.47-51 As an example, NPHP proteins, the neph-
rocystins, critically regulate the recruitment and access of pro-
teins to the cilium, such as through the formation of ciliary 
gating complexes.52-61 In this regard, NPHP2/inversin recruits 
and anchors NPHP3, NPHP9/Nek8, and the newly identified 
NPHP protein, Anks6, to a distinct region in the proximal cil-
ium, the inversin compartment, and integrity of this module is 
essential for correct laterality establishment in organisms from 
zebrafish to humans.15,62-68 Inversin was first discovered for its 
role in L-R establishment62 and, presumably, the inversin com-
partment impinges on the function of motile and/or sensory 
cilia at the embryonic node,67,69 which is critical in breaking the 
embryonic bilateral symmetry through the generation of a net 

Figure 1. Different populations of cilia in the developing heart. (A) Scanning electron microscopy images of nodal cilia (arrows) at the embryonic node. 
Reproduced from ref. 8 with permission. (B) Transmission electron microscopy (i, ii, and iii) and immunofluorescence microscopy (iFM) (iv) images of 
cardiac primary cilia (arrows) emanating from the centrosomal mother centriole that functions as a basal body. in the iFM analysis, the primary cilium was 
marked with an antibody against acetylated α-tubulin (Ac tb; green), and the lower part of the cilium (open arrow) was marked with an antibody against 
Nephrocystin 8 (Rpgrip1l/Nphp8; red). Nuclei were marked with DAPi, which stains DNA (blue). Abbreviations: At: Atrium; eC: endocardial cushions; OFT: 
outflow tract; vT: ventricle. Reproduced from ref. 133 (i), 142 (ii and iii), and 22 (iv) with permissions.
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leftward flow of the embryonic fluid during gastrulation8 (see 
also below). Consequently, NPHP patients occasionally present 
with laterality defects and associated complex CHD.13,15,47,66,68,70-

72 At later stages of heart development, primary cilia may assist 
in coordinating signaling networks required for morphogenesis 
and maturation of the heart.

Major Steps in Heart Development

Two different cell populations of mesodermal origin, i.e., 
the first (FHF) and second (SHF) heart fields, participate in 
mammalian heart development in a spatiotemporal manner; 
cells from FHF contribute to the ventricles, the atria and the 
atrioventricular canal (AVC), whereas cells from SHF contrib-
ute to the outflow tract (OFT) and all other regions of the heart, 
except for the left ventricle (Fig. 2).73-75 At embryonic day (E) 
6.5 in mice, myocardial progenitor cells undergo epithelial-to-
mesenchymal transformation (EMT) and ingress through the 
primitive streak while giving rise to the mesodermal layer form-
ing the FHF. On each side of the midline, the FHF resides as 
two patches of mesodermal cells that extend across the midline 
and at E7.5, they fuse to form a crescent-shaped epithelium 
called the cardiac crescent. Cells from SHF initially lie medially 
to FHF precursor cells at E7.0–7.5.73 During embryonic folding 
at E8 in mice and day 21 in humans, the cardiac crescent fuses 
along the midline forming the early heart tube (reviewed in refs. 
1 and 76).

To form the cardiac chambers, the heart tube loops and 
expands regionally. Parts of the heart tube, which form the outer 
curvature of the looped heart tube, begin to gain a chamber myo-
cardium gene expression profile, and the tissue expands in a bal-
loon-like fashion to eventually become the atrial and ventricular 
chambers.77 Specific parts of the heart tube retain a non-chamber 
myocardium gene expression profile, and function as “rings” of 
non-expanding myocardium, which participate in formation of 
the four-chambered heart.78 This non-expanding myocardium 
consists of the inflow tract, the AVC and the OFT. Reciprocal 
signaling in the AVC and OFT between the endocardium and 
the myocardium induces endocardial cells to undergo endothe-
lial to mesenchymal transformation (EndoMT), and invade the 
extracellular matrix, also known as the cardiac jelly, to form the 
endocardial cushions which will eventually be transformed into 
cardiac valves and participate in septation of the OFT.79 Cells 
from the SHF and the neural crest also participate in septation 
of the OFT.75,80 The left and right atrium and ventricle become 
separated by muscular partitions, which grow from the atrial roof 
and the ventricular floor and meet endocardial cushions of the 
AVC and OFT.81

Heart Development is Coordinated  
by Multiple Signaling Networks

Heart development is regulated by a complex network of 
inductive and inhibitory signals within the heart and from 

Table 2. Human ciliopathies that include cardiac phenotypes

Ciliopathy Abbreviation OMIM number Heart defects observed in patients a

Alström syndrome ALMS 203800 Dilated cardiomyopahty in 60% of cases217

Bardet-Biedl syndrome BBS 209900
CHD in 7–18% of cases. Types of CHD include ASD,PDA vSD, AS, aortic 
valve stenosis, CoA, atrioventricular canal defect(AvCD), subvalvular 

stenosis, cardiomyopathy50,218-220

Dandy-walker syndrome DwS 220200 CHD in 36% of cases. vSD, HLHS, hypoplastic right heart, ASD, TOF221

ellis-van Creveld syndrome evC 225500
CHD in 60% of cases. Types of CHD often include AvCD, Common atrium 

and PLSvC, but other defects are also observed47,49,222

Joubert syndrome and related 
disorders

JBTS 213300 Heart defects include AoS, ASD, dicuspid aortic valve, PLSvC, TGA47,48,223

McKusick-Kaufman syndrome MKKS 236700
CHD in 14% of cases. Types of CHD include AvCD, PLSvC, TGA, HLHS, vSD, 

ASD as well as other defects.47,50

Meckel syndrome MKS 249000
CHD in 16% of cases. Types of CHD include ASD, vSD, bicuspid aortic 

valve and HLHS224

Nephronophthisis NPHP1, 2, 3, 4 and 11
256100, 602088, 
604387, 606966, 

613550

Frequency of CHD is very variable and perhaps dependent on disease 
gene. Cardiac phenotypes include Cardiomyopathy, Si, dextrocardia, TGA, 

AvCD, DORv, vSD, ASD and AS13,14,68,225

Orofaciodigital syndrome, 
type ii and type iv

OFD ii, OFD iv 252100, 258860 Heart defects include AvCD, CA, HLHS, CoA47

Sensenbrenner syndrome SS 218330 Bicuspid aortic valve. ASD hypertrophic left ventricle226

Short rib-polydactyly 
syndrome i-iv

SRPS i-iv
263530, 263520, 
615087, 263510, 

269860
Heart defects include AvCD, PLSvC, TGA, HLHS, CoA, vSD, ASD47

aAS, aortic stenosis; ASD, atrial septal defect; AvCD, atrioventricular canal defect; AvS, aortic valve stenosis; CA, common atrium; CoA, coarctation of the 
aorta; DORv, double outlet right ventricle; HLHS, hypoplastic left heart syndrome; PDA, Patent ductus arteriosus; PLSvC, persistent left superior vena cava; 
TGA, transposition of the great arteries; TOF, tetralogy of Fallot; vSD, ventricular septal defect.
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surrounding tissues that impact on cardiac specification, differ-
entiation, and maturation. Initially, a series of craniolateral endo-
derm-derived inductive signals combined with inhibitory signals 
derived from midline structures regulate early cardiogenesis.82 In 
all cases, the signals are controlled and interpreted by multiple 
signaling pathways, of which many are involved in coordination 
of several stages of heart development. As an example, the Hh sig-
naling pathway plays an important role in establishing L-R asym-
metry in vertebrates.83-85 In canonical Hh signaling, Hh ligands 
bind to and inhibit the activity of the transmembrane recep-
tor Patched (Ptch), allowing another transmembrane receptor, 
Smoothened (Smo) to promote the activation of Gli transcrip-
tion factors that control cellular processes during development 
and in tissue homeostasis.86 The heart is the first organ to break 
the embryonic bilateral symmetry, and the asymmetric looping of 
the heart tube is important for correct chamber development and 
septation.11 Targeted deletion of the Hh ligand gene, Sonic hedge-
hog (Shh), results in atrial and ventricular septum defects and 
abnormal development of the OFT in mice.87 In agreement with 
this, atrial septum progenitor cells and cells of the pulmonary 
trunk show Hh responsiveness in mouse embryos.88 Similarly, 
inhibition of Hh signaling in chicken embryos results in pulmo-
nary atresia and stenosis as well as persistant truncus arteriosus 
(PTA).89 In chicken embryos, SHH is expressed in the pharyngeal 
endoderm, adjacent to the SHF, where PTCH is expressed, sug-
gesting a requirement for Hh signaling in SHF.89 In line with this, 
tissue-specific deletion of Hh signaling components suggests that 
Hh signaling is required within the SHF and cardiac neural crest 
for normal development of the OFT87,90 and within the dorsal 

mesocardium for atrioventricular (AV) septation and AV valve 
development.91

The TGFβ/Bone Morphogenic Protein (BMP) signaling net-
work also plays a critical role during heart development.92 This 
network comprises a multitude of different ligand types that act 
through the activation of a family of transmembrane receptor ser-
ine/threonine kinases, which in part activate Smad transcription 
factors to elicit different cellular responses during development 
and in tissue homeostasis.92,93 Nodal, Lefty1, and Lefty2 are all 
members of the TGFβ ligand superfamily. Like Shh, Nodal and 
Lefty1/2 are asymmetrically expressed in the node and involved 
in establishment of L-R asymmetry in the mouse embryo (see 
above, reviewed in ref. 10). In line with this, mutations in the 
NODAL and LEFTY2 genes cause heterotaxy and/or isolated 
CHD in humans.94,95 In vitro collagen gel experiments, using 
AV or OFT explants, suggest that TGFβ signaling is involved 
in EMT and EndoMT during the formation of endocardial 
cushions,96-98 and targeted mutation of genes encoding TGFβ 
ligands causes defects of the OFT (double outlet right ventricle 
(DORV)), abnormal semilunar valves, and AV cushions, sup-
porting an involvement in development of the endocardial cush-
ions.99,100 Null mutants for the TGFβ receptor genes, Tgfbr1 and 
Tgfbr2, are embryonic lethal in mice, but tissue specific deletion 
of TGFβ receptor genes support a role for TGFβ signaling in 
development of the OFT.101,102 Targeted deletion of Tgfbr1 or 
Tgfbr2 in neural crest cells leads to OFT defects (PTA, inter-
rupted aortic arch and ventricular septal defect [VSD]), strongly 
suggesting that TGFβ signaling is necessary for cardiac neural 
crest cells to promote normal septation of the OFT.101-103 Other 
mouse models with targeted deletions in BMP/TGFβ signaling 

Figure 2. Overview on developmental stages of the heart. The cardiac crescent is formed around day 15 in humans. Myocardial progenitors from the 
first heart field (FHF, red color) contribute to the ventricles, the atria and the atrioventricular canal (AvC). Progenitors from the second heart field (SHF, 
blue color) contribute to the outflow tract (OFT) and all other regions of the heart, except the left ventricle. A linear heart tube is formed around day 21 
in humans. The heart tube loops and chambers are formed by ballooning of regions destined to become atrium and ventricles. endocardial cushions 
form in the AvC and the OFT. These cushions will later transform into the semilunar and atrioventricular valves and will participate in the septation of 
the OFT. Abbreviations: Ao, Aorta; LA, left atrium; Lv, left ventricle; OTC, outflow tract cushions; Pa, pulmonary artery; RA, right atrium; Rv, right ventricle.
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component genes support a role of this signaling network in heart 
development. Deletion of Smad6, which inhibits TGFβ/BMP 
signaling, causes valvular hyperplasia and OFT defects in mice.104 
Further, deletion of Ltbp1, encoding latent TGFβ-binding pro-
tein 1, causes OFT defects,105 whereas cardiac specific deletion of 
Bmp2 causes AV cushion defects,106 and cardiac specific deletion 
of Bmp4 results in OFT defects.107 In humans, genomic deletion 
of TGFBR217 and point mutations in SMAD6108 and SMAD2109 
have been associated with heart defects in the form of heterotaxy 
(TGFBR2, SMAD2) and valve defects (SMAD6 ).

Nodal Cilia and Heterotaxy

During gastrulation, both motile and immotile (primary) cilia 
are thought to play a critical role for the establishment of the L-R 
asymmetry of the body and proper placement and patterning of 
the internal organs and associated vasculature, including loop-
ing of the heart.6,39 Within the node, which is formed after defi-
nition of the dorsoventral and anteroposterior axes,110,111 motile 
nodal cilia (Fig. 1A) rotate synchronously to produce a leftward 
movement of embryonic fluid, i.e. the nodal flow. The correct 

positioning of nodal cilia is a prerequisite for the nodal flow, 
and a process that relies on planar cell polarity (PCP) signal-
ing (reviewed in ref. 39). The nodal flow is essential for defin-
ing lateral asymmetry8,67,112,113 in part through activation of the 
Nodal signaling cascade. Initially, the gene encoding actin bind-
ing lim protein 1 (Ablim1) is evenly expressed across the node 
but Ablim1 mRNA gradually disappears from the left side of the 
node in response to nodal flow, at least partially independent of 
the Nodal signaling cascade.114 Simultaneously, Nodal accumu-
lates at the left side of the embryo, conferring left-side specific 
Pitx2 expression and asymmetric morphogenesis.115,116

A total of 200–300 cilia generate the nodal flow in the mouse, 
but it has been suggested that as little as two motile cilia at the 
node can break the bilateral symmetry in the mouse embryo.111 
Several models have been introduced to explain how nodal flow 
regulates Nodal signaling and establishment of L-R asymmetry 
(reviewed in ref. 6). Two models suggest that nodal flow cre-
ates an asymmetric distribution of morphogens across the node 
resulting in accumulation of signaling molecules at the left side of 
the node — either as soluble molecules in the embryonic fluid or 
as encapsulated molecules that are delivered to the left side of the 

Figure 3. Defects in ciliogenesis lead to CHD in Ift88/Tg737−/− mouse embryos (e11.5). Upper panels: longitudinal mid-sagittal sections. Lower panels: 
comparable longitudinal para-sagittal sections. Abbreviations: Bw, body wall; L, liver; LA, left atrium; OFT, outflow tract; PS, pericardial space (arrow); Siv, 
sinus venosus; T, tongue; vT, ventricle. The black bars have identical dimensions in wt (A) and mutant (B) embryos. The distal end of the OFT is marked 
with a dotted line. The figure is modified from reference 21 with permission.
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node in membrane-bound vesicles, also known as nodal vesicular 
parcels (NVPs) (reviewed in ref. 39). In the latter scenario, NVPs 
contain Shh and retinoic acid that induce an increase in the level 
of intracellular Ca2+ on the left side of the node and subsequent 
generation of L-R asymmetry.117 A third model suggests that 
the nodal flow initiates a Ca2+ influx in crown cells on the left 

side of the node, via activation of the polycystins (PC2 and the 
PC1 homolog, PC1 like 1) in mechanosensory, immotile pri-
mary cilia.7,9,118,119 In support of the latter model, the asymmetric 
expression of Ablim1 at the node during the mid-headfold stage 
requires both a nodal flow and PC2, but the details of this rela-
tionship have not been resolved.114 Further, it was recently shown 

Figure 4. Primary cilia and signaling pathways in cardiomyogenesis and heart development. (A) Schematic drawing of signaling pathways in the cilium. 
(B) immunofluorescence microscopy (iFM) analysis of Hedgehog (Hh) and Platelet-Derived Growth Factor Receptor α (PDGFRα) signaling components 
in ventricular primary cilia in transverse embryonic mouse heart sections at e11.5. Primary cilia (arrows) were marked with an antibody against acety-
lated α-tubulin (Ac tb; green). Signaling components (red) were marked with antibodies against transcription factors in Hh signaling (Gli2 and Gli3; 
upper and middle row images) and PDGFRα (lower row images). Nuclei were marked with DAPi, which stains DNA (blue). Reproduced from reference 
21 (i) and 22 (ii and iii) with permissions. (C) Left image: Light microscopy analysis of a beating cluster of cardiomyocytes differentiated from mouse 
embryonic stem cells and iFM image (inset) of a primary cilium (arrow) marked with glutamylated α-tubulin (Glu tb; green) in cardiomyocytes express-
ing α-actinin (red). Nuclei were marked with DAPi (blue). Right images: iFM analysis on the localization of Hedgehog and Transforming Growth Factor 
β (TGFβ) signaling components to primary cilia (Ac tb, open arrows) in stem cells undergoing cardiomyogenesis. The ciliary pocket area is indicated 
with arrow heads. Hh signaling components (Smoothened [Smo], Patched-1 [Ptch-1] and Gli2, all green) localizes along the entire length of the cilium 
(red) - nuclei were marked with DAPi (blue) (upper row images). TGFβ signaling components (TGFβ Receptor i [TGFβ-Ri], phospho-Smad2/3 [pSmad2/3] 
and Smad4, all green) localize around the ciliary pocket area (lower row images). For Smad4 localization, the cilium is indicated with blue fluorescence. 
Reproduced from references 20 and 21 with permissions.
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that glycosylation of the Notch receptor in the crown cells by the 
N-acetylgalactosamine-type O-glycosylation enzyme GALNT11 
is essential for the optimal ratio between motile and immotile 
cilia at the mouse node, in addition to correct Pitx2 expression in 
Xenopus embryos.120 Importantly, however, the described models 
are not mutually exclusive, and since the breaking of bilateral 
symmetry is a crucial step in embryonic development, it is pos-
sible that several mechanisms exist to ascertain this process, up- 
and downstream of the nodal flow.114,121

The importance of nodal cilia in establishing L-R asymme-
try was first revealed by the laboratories of Martina Brueckner 
and Nobutaka Hirokawa. Mouse embryos with deletion in either 
Kif3a or Kif3b displayed absence of nodal cilia with accompanied 
loss of nodal flow and L-R abnormalities, including defective car-
diac looping,8,122 and mutation in Lrd, disrupting ciliary motility, 
produced a similar phenotype.113,123 Since these initial discover-
ies, several additional genes and gene products that regulate cili-
ary formation, maintenance, and function have been found to 
be critical for generating L-R asymmetry. These include genes 
encoding transcription factors such as Tbx6, Rfx3, Hfh-4, and 
ZIC3, which when defective lead to defects in formation of nodal 
cilia as well as situs abnormalities including situs inversus (SI) and 
heterotaxy.16,124-126 Further, multiple genes important for ciliary 
positioning, motility and disassembly have been associated with 
situs abnormalities and heterotaxy, often associated with car-
diac defects such as DORV, septal defects, transposition of the 
great arteries (TGA), TOF, single ventricle (SV), and coarctation 
of the aorta (CoA) in mice and/or zebrafish (reviewed in refs. 
65,127,128). As an example, ciliary NPHP2/inversin is required 
for the generation of a proper nodal flow,67 and potentially con-
trols nodal cilia positioning.39

In human studies, patients with mutations in genes required 
for ODA assembly and function often have motility-defective cilia 
and situs abnormalities.128,129 In a cohort of patients with ciliary 
motility defects, the incidence of heterotaxy was highly increased 
(6.3%) compared with the general population (0.004%). 
Further, the incidence of CHD is significantly increased in het-
erotaxy patients, when compared with the general population 
(57% vs. 1% respectively)129,130 with septal defects and TGA being 
the most prevalent CHDs.129 In an ENU mutagenesis screen in 
mice,131 a mutation in the gene encoding Dnah5 (a dynein heavy 
chain) was found to cause situs abnormalities, including hetero-
taxy (40%) and SI (35%), and many of the mice had associated 
CHD similar to those observed in the study by Kennedy and col-
leagues.129 Together, these studies reflect the importance of nodal 
cilia and their motility in situs establishment.

In summary, mutations affecting the structure and function of 
nodal cilia lead to L-R asymmetry defects associated with CHD. 
However, it is important to realize that such mutations may also 
impact on the assembly and/or function of primary cilia formed 
within the developing heart, making it difficult to distinguish 
between the function of different populations of cilia in time and 
space during heart development; for example whether a given 
heart defect results from defective nodal and/or cardiac primary 
cilia. Nevertheless, as will be discussed below, multiple lines of 

evidence indicate that a series of cilia-based heart defects may be 
associated specifically with defects in cardiac primary cilia.

Cardiac Primary Cilia in Heart Development

Cardiac primary cilia were first discovered in 1969 when Rash 
and colleagues identified primary cilia throughout the embry-
onic and adult heart in chickens, mice, rabbits, and lizards.132 
Later, cardiac primary cilia were also observed in the embryonic 
and adult human heart,133 as well as other parts of the cardio-
vascular system, including endothelial cells of the aorta134 and 
cultured human umbilical vein endothelial cells.135 The distri-
bution of cardiac primary cilia during cardiogenesis is poorly 
resolved; however, a few papers have described a spatiotemporal 
distribution during heart development and morphogenesis. In 
E9.5 mouse embryos, where the early heart tube has looped and 
is contracting, primary cilia are lining the endothelium of both 
atria primordia, the forming ventricular trabeculations and the 
endothelium lining the developing endocardial cushions.136 At 
E12.5, primary cilia are also found in the epicardium and in the 
mesenchymal cells of the endocardial cushions. The ventricular 
trabeculations remain ciliated, but the atria primordia are now 
less ciliated and the endothelium lining the endocardial cushion 
is de-ciliated.136 For examples of cardiac primary cilia, please see 
Figure 1B. The re-absorption of cilia in the endothelium of the 
endocardial cushions is in agreement with other studies showing 
that primary cilia are resorbed in response to sheer stress.135,137-139 
Fluid shear stress is known to play important roles in trabecula-
tion, cardiomyocyte proliferation, and establishment of the con-
duction system, and changes in the fluid flow leads to CHD.140 
Interestingly, mouse endothelial cells that form stunted primary 
cilia (e.g derived from the Tg737orpk mutant) or are mutated in 
Pkd1 show impaired response to shear stress,141 and mice with 
mutations in Kif3a, Lrd, Pkd2,136 and Ift88/Tg737 21,142 have 
defects in chamber maturation.21,136,142

A variety of different vesicle trafficking pathways regulate 
the assembly, maintenance, and sensory function of cilia.143,144 
Often, the proximal part of the cilium is placed within an 
invagination of the plasma membrane known as the ciliary 
pocket, which functions as the ciliary platform for exocytosis of 
Golgi-derived vesicles and for clathrin-dependent endocytosis 
(CDE).145 Available evidence suggests that exocytosis is required 
for the targeting of transmembrane receptors and ion channels 
to the ciliary membrane, and CDE may regulate ciliary signal-
ing through the internalization and/or recycling of receptors at 
the ciliary base.20,146 In support of a critical role of cilia in heart 
development, mutations in genes involved in trafficking of ves-
icles to and from the cilium are associated with CHD. Mutant 
mouse embryos lacking the Golgi-associated protein, Gmap210, 
which is required for Ift20-mediated trafficking and localization 
of PC2 to the cilium,147 die around the time of birth and show 
heart defects including VSD and TOF.147 In agreement with this, 
Pkd2−/− mouse embryos display heart defects reminiscent of those 
observed in Gmap210−/− mouse embryos.148 Further, Pifo−/− E7.5 
mouse embryos, which lack Pitchfork that interacts with compo-
nents of the endocytic machinery, including the small GTPases 

©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.



116 Organogenesis volume 10 issue 1

Rab8, Rab11 and Arl13b, and induces the resorption of the pri-
mary cilium before entry into mitosis,19 display double-ciliated 
cells in the nodal pit as well as L-R defects with associated car-
diac defects, including DORV and right ventricle hypoplasia.19 
Other proteins that are important for intracellular trafficking 
pathways in relation to cilia and have been associated with CHD 
include the Alström syndrome protein 1, ALSM1, and the sort-
ing Nexin, SNX10.149,150 ALMS1 localizes to the pericentriolar 
region together with Rab11 and early endosomes, and in isolated 
fibroblasts from ALMS patients the kinetics of transferrin uptake 
by CDE is increased compared with that in wild type (wt) fibro-
blasts.149 SNX10 affects the ciliary localization of Rab8a, and in 
snx10 mutant zebrafish, cardiac looping is affected.150 In support 
of a role for nexins in cardiogenesis, a patient with TOF was 
recently found to have a rare genomic deletion which include the 
SNX8 gene.130 In relation to the different functions of nodal and 
cardiac primary cilia at different time points during development, 

it is likely that some of the heart defects found in ciliary mutants 
may be caused by events later in heart development, and could 
thus be triggered by defects in cardiac primary cilia.21,136

Mutations in other genes involved in ciliogenesis also causes 
CHD. Ift88/Tg737−/− mouse embryos with stunted cilia develop 
severe CHD including atrial septal defects (ASD), VSD, atrio-
ventricular septal defect (AVSD), and OFT septal defects21,136,142; 
defects that are all associated with malformed endocardial cush-
ions (Fig. 3). Development of the endocardial cushions depends 
on EndoMT, a cellular process whereby endothelial cells lose the 
epithelial phenotype and differentiate into mesenchymal cells 
that ingress into the underlying cardiac jelly.151 The endocar-
dial cushions in Kif3a−/− and Pkd2−/− mouse embryos are acel-
lular and embryos with mutation in the Ift88/Tg737 gene have a 
decreased amount of mesenchymal cells in the endocardial cush-
ions. Furthermore, endocardial cells derived from Ift88/Tg737−/− 
mice show disturbances in EndoMT.136,142,151 Taken together, this 

Figure 5. examples of signaling networks involved in development of specific anatomical structures of the heart. Protein-protein interaction networks 
involved in atrial septation, outflow tract development, atrioventricular valve development and formation of trabeculae are shown. Functional clusters 
within the networks are color coded. Tissues affected by the networks are marked in a hematoxylin-eosin stained frontal section of the heart from a 37 
d human embryo. Abbreviations: AS, atrial septum; eC, endocardial cushions; OFT, outflow tract; vT, ventricle. The figure is modified from reference 212.
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suggests that cardiac primary cilia are involved in formation and 
development of the endocardial cushions. Indeed, the regula-
tion of signaling networks during heart development has in some 
cases been linked to the function of cardiac primary cilia,20-22 
indicating the complexity by which different populations of cilia 
may contribute to the formation the heart in a spatiotemporal 
manner. However, we still know little as to how cardiac primary 
cilia contribute to heart development independently of nodal cilia 
and downstream of situs establishment, and whether CHD may 
arise exclusively by defects in the sensory function of primary 
cilia in the tissues of the developing heart.

Cardiac Primary Cilia and Coordination  
of Hedgehog Signaling

Hh signaling is coordinated by primary cilia in a variety of 
different cell types to regulate tissue patterning and homeostasis 
in vertebrates (reviewed in refs. 29, 86, 152, and 153). The cilium 
functions as a unique compartment for the continuous turnover 
of Hh signaling components, such as Ptch-1, Smo, and Gli tran-
scription factors and other regulatory proteins to control cellular 
processes. Smo becomes localized to the primary cilium through 
the binding of Hh ligands to Ptch-1, which then induces Smo-
dependent activation of Gli transcription factors in the cilium. 
Consequently, defects in ciliary assembly or turnover of Hh com-
ponents in the cilium lead to a plethora of developmental disor-
ders and diseases, including CHD.21,22,136,142

A number of observations have specifically linked cardiac 
primary cilia to the regulation of Hh signaling. Components 
in this pathway localize to primary cilia in embryonic hearts as 
well as in cardiomyocytes differentiating from stem cells in vitro 
(Fig. 4),21,22,142 and defective ciliary assembly is associated with 
defective cardiomyogenesis21 as well as Hh-related heart defects 
that might be independent of nodal cilia, including ventricular 
and endocardial cushion-derived defects.122,142,154 Further, 60% 
of patients with mutations in genes encoding the EVC proteins, 
EVC1/EVC2, which interact with Smo at the primary cilium 
to transduce Hh signaling155-159, display CHD, including AVSD 
and ASD.47,51 In line with these findings, EVC proteins are co-
expressed in the OFT and the mesenchymal structures of the 
atrial septa and AV cushions during heart development in mice51; 
areas that are known to be ciliated during cardiogenesis.136,142

Septation of the ventricles is also dependent on the gene Fantom 
(Ftm)22 that encodes the ciliary base protein Rpgrip1l/Nphp8, 
which is required for proper ciliogenesis, PCP, and Shh signal-
ing, and when mutated leads to a series of ciliopathies.22,52-54,160-165 
In Ftm null mouse embryos, 33% of all analyzed embryos had 
VSD in the membranous part of the septum, 81.5% had defects 
in the muscular part, and all analyzed embryos had reduced 
atrial and ventricular wall thickness.22 In the ciliated areas of 
Ftm−/− embryonic hearts at E11.5, the rate of proliferation and 
Shh signaling was markedly reduced. In contrast, no change was 
observed in non-ciliated areas,22 suggesting that Ftm relies on 
cardiac primary cilia for signaling, and that the heart phenotypes 
in the Ftm−/− mouse are primary cilia-dependent. Ftm seems to be 
involved in the processing of Gli3,161 and in agreement with this, 

the amount of unprocessed Gli3 is 10-fold higher in Ftm−/− hearts 
compared with heart of control littermates.22 The cardiac pheno-
types described above suggest that Hh signaling is important for 
proliferation and differentiation of cardiomyocytes and are thus 
in agreement with the previous findings that primary cilia in part 
coordinate Hh signaling during the differentiation of stem cells 
into cardiomyocytes.21,166 Finally, defects in proper trafficking of 
Smo and Ptch1 in and out of the cilium due to mutations in Ift25 
lead to cardiac phenotypes in mice reminiscent of those found in 
Hh signaling mutants, including defects involving the ventricle, 
OFT and AVC.154

Cardiac Primary Cilia and Coordination  
of TGFβ Signaling

The superfamily of TGFβ/BMP signaling pathways is involved 
in a vast majority of cellular processes and is therefore fundamen-
tally important during development and in tissue homeostasis.92 
The functional output of these pathways highly relies on their 
extensive cross-talking with other receptor-mediated signaling 
systems, leading to synergistic or antagonistic effects on tissue 
patterning and organ function.92 Consequently, deregulation of 
TGFβ/BMP activity almost invariably leads to pathologies in 
the adult as well as severe developmental defects, including mal-
formation of the OFT, AVC and septa.19,167 Interestingly, defects 
in these areas are also found in cilia-related mutants. Further, 
genomic deletion and duplication of the human gene encoding 
TGFβ Receptor II, TGFBR2, causes heterotaxy,17 whereas endo-
thelial cells derived from Ift88/Tg737−/− mouse embryos show 
defective TGFβ signaling upon sheer induced EndoMT.151 These 
results indicate that TGFβ signaling is important at multiple 
stages during heart development, i.e., both up- and downstream 
of L-R determination.

We recently showed a function of the primary cilium in 
regulating canonical TGFβ signaling through the activation of 
Smad2/3 transcription factors at the ciliary pocket.20 This sig-
naling pathway is regulated by CDE where internalization of 
ligand-bound TGFβ receptors in clathrin coated vesicles (CCVs) 
and early endosomes (EEs) allows Smad2/3 to become activated 
by receptor-mediated phosphorylation.168,169 In several cases, 
cardiac primary cilia emerge from a ciliary pocket133,142 and dur-
ing the differentiation of murine carcinoma stem cells as well 
as human embryonic stem cells (hESC) into cardiomyocytes, 
TGFβ receptors and activated Smad2/3 accumulate at the ciliary 
base (Fig. 4).20 Further, the TGFβ ligand, TGF-β1, stimulates 
the differentiation of stem cells into cardiomyocytes, and mouse 
embryonic fibroblasts derived from mice with a hypomorphic 
mutation in Ift88/Tg737 (Tg737orpk) show decreased TGFβ sig-
naling associated with reduced CDE activity at the ciliary base.20 
These findings support the conclusion that cardiac primary cilia 
play a direct role in coordinating TGFβ signaling during car-
diomyogenesis. It remains to be investigated whether BMP sig-
naling also is associated with the primary cilium during heart 
development.
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Cardiac Primary Cilia and Coordination  
of PDGF Signaling

PDGF signaling is mediated by a series of ligands (PDGF-AA, 
-AB, -BB, -CC, and -DD), which bind to and activate either 
homo- or hetero-dimers of the RTKs, Platelet Derived Growth 
Factor Receptor α (PDGFRα) and Platelet Derived Growth 
Factor Receptor β (PDGFRβ).170 Previous studies showed that 
PDGFRα specifically localizes to primary cilia in a number of cell 
types and tissues, including the heart,22,171-176 and that activation 
of the receptor and its downstream effectors, Mek1/2-Erk1/2-
Rsk and Pi3K-Akt, is initiated in the cilium to regulate cell cycle 
control and directional cell migration in fibroblasts.171,177,178

The recent finding that PDGFRα localizes to primary cilia 
in E11.5 mouse heart ventricles22 (Fig. 4), indicates that part of 
the PDGF signaling network is associated with cardiac primary 
cilia during heart development. Ciliary localization of PDGFRα 
is downregulated in both Ftm- and Shh-negative ventricles, sug-
gesting that PDGFRα signaling acts downstream of Hh signal-
ing in cardiac primary cilia and that defects in these cilia are 
associated with reduced ventricular cell proliferation leading to 
diminished ventricular wall thickness and VSD.22 Interestingly, 
PDGFRα and its specific ligands, PDGF-A/C,179 localize to the 
ventricles and the OFT and AV cushions, and the myocardium 
of the OFT, VS, and AS during heart development.180,181 These 
regions correspond to ciliated areas of the heart, further empha-
sizing a link between PDGFRα signaling and the primary cil-
ium. In particular, the spatiotemporal expression of PDGFRα 
and PDGF-A/C ligands suggests a role of this signaling path-
way during remodeling of the myocardium and in septation of 
atria, ventricles, and OFT,180,182,183 and in agreement with this, 
alteration in PDGF signaling affects myofibril differentiation 
and migration.184,185 Furthermore, studies from mice show that 
mutated or absent PDGFRα, results in prenatal death and heart 
defects including thinned myocardium, and septa, valve, OFT, 
and aortic arch malformations.186-188 In conclusion, part of the 
PDGF signaling system might be specifically coordinated by car-
diac primary cilia, potentially in a network with Hh and other 
signaling pathways to coordinate cardiogenesis.

Cardiac Primary Cilia and Other Signaling Pathways

In addition to Hh, TGFβ, and PDGFRα signaling, multiple 
other signaling networks critically regulate heart development, 
including Wnt and Notch signaling.82,189-194 The Wnt signaling 
network consists of a highly complex signaling arrangement that 
traditionally is divided into canonical and non-canonical Wnt 
signaling.195 In canonical signaling, the binding of Wnt-ligands 
to Frizzled (Fz) receptors facilitates stabilization of β-catenin, 
which mediates transcription of canonical Wnt target genes in 
cell proliferation and differentiation. Non-canonical Wnt signal-
ing operates independently of β-catenin via Dishevelled (Dvl) 
and its various interaction partners, such as Vangl2 and Celsr, 
resulting in polarization of cells and tissues, e.g. PCP, to promote 
cell migration and convergent extension movements.2,189,192,193,196 
The link between Wnt signaling and the primary cilium is highly 

controversial.32,35,197 However, many Wnt signaling components, 
such as Fz3, Dvl, and β-catenin, localize to the ciliary/centro-
somal axis, and dysregulated Wnt signaling has been reported in 
cells and tissues with disrupted ciliogenesis or basal body integ-
rity.198-200 Moreover, in the mouse inner ear, establishment of PCP 
was shown to depend on the formation of functional primary 
cilia.201 However, other studies in mice and zebrafish reveal no 
obvious canonical or non-canonical Wnt phenotypes in cilia 
mutants,202,203 emphasizing the importance of further studies in 
this area.

Multiple PCP components are strongly expressed in the OFT 
during early heart development, and when defective, result in 
OFT and ventricular defects.2,189 Mutations in Vangl2 disrupt 
migration of cells into the OFT and this is associated with 
impaired OFT myocardialization as well as ventricular and OFT 
septal defects.189 The localization of Vangl2 during heart devel-
opment is dependent on Scribble, another PCP component,204 
and in agreement with this, Scribble phenotypes are reminis-
cent of Vangl2 mutants.204,205 In support of the idea that non-
canonical Wnt signaling is associated with cardiac primary cilia, 
Gmap210−/− mouse embryos with impaired ciliogenesis due to 
impaired ciliary targeting have cardiac phenotypes resembling 
those observed in multiple PCP mutants, including Vangl2, 
Dvl2, and Scribble mutant mice.147 Although kidney-specific 
depletion of Ift20 in mice resulted in defective Wnt signaling 
in the affected tissues,206 it remains to be determined whether 
the cardiac phenotypes observed in the Gmap210-/- mouse are 
directly associated with defective non-canonical Wnt signaling. 
Interestingly, NPHP2–4 and Ftm/Rpgrip1l/NPHP8 all seem to 
impair canonical Wnt-signaling while promoting non-canonical 
Wnt responses.14,165,200,207-209 As an example, NPHP2/inversin 
and the structurally related diversin in zebrafish are required for 
convergence extension movement in vertebrates, and depletion 
of either result in cardiac defects.190,208 Together, these aspects 
suggest that inversin and other NPHPs are implicated in heart 
development by controlling Wnt signaling, but whether this is 
coordinated by cardiac primary cilia remains speculative at this 
point.

During cardiogenesis, Notch signaling is important for devel-
opment of the OFT and ventricular trabeculation.194 Cell-cell 
contact is required for Notch signaling as the ligands for the 
Notch receptors (1–4) are transmembrane proteins and include 
proteins from the Delta and Jagged family. Ligand binding to 
the Notch receptors induces cleavage and release of NICD, the 
intracellular part of the receptor that translocates to the nucleus 
to regulate gene transcription.194,210 Recently, Notch signaling 
was associated with the primary cilium during skin develop-
ment, as Notch3 and presenilin-2 localize to the primary cilium 
in suprabasal epidermal cells, and defective IFT results in altered 
Notch signaling.31 The expression of Notch components corre-
lates with ciliated areas of the heart during development, and 
defective Notch signaling leads to cardiac phenotypes reminis-
cent of cilia-related phenotypes.194,210,211 It was recently shown 
that glycosylation of the Notch receptor is important for speci-
fying non-motile primary cilia in the frog gastrocoel roof plate 
(frog node),120 although a direct link between Notch signaling 
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and primary cilia in cardiomyogenesis and heart development 
remains to be proven.

Concluding Remarks and Perspectives

Primary and motile cilia are required throughout heart devel-
opment. Initially, at E8 in the mouse, non-motile sensory cilia on 
crown cells at the periphery of the node and motile cilia at the 
center of the node are required for generating the L-R asymmetry 
of the embryo and correct looping of the heart. At later stages, 
primary cilia in the developing heart may coordinate signaling 
pathways important for organizing morphogenesis and matura-
tion of the heart. Consequently, defects in assembly or function 
of nodal and cardiac primary cilia may lead to CHD.

Solexa-based transcriptomics of murine stem cells differenti-
ating into beating clusters of cardiomyocytes showed that this 
process involves time-dependent differential expression of genes 
within the Mitogen Activated Protein Kinase (MAPK), Wnt, 
TGFβ/BMP, Hh, Epidermal Growth Factor Receptor (EGFR) 
and Notch signaling pathways,20 and both Hh and TGFβ sig-
naling are associated with primary cilia forming within these 
clusters of cardiomyocytes.20,21 Lage et al. (2010) performed a 
genome-wide systematic mapping of protein-protein interaction 
networks involved in different stages of heart development based 
on mouse models.212 In this study, high-confidence experimental 
interactome data suggested that heart development is controlled 
by communication within and between a defined set of signal-
ing pathways (Fig. 5). As such, these signaling pathways seem 
to function as recycled signaling modules, which integrate into 
higher-order networks to control the different stages of heart 
development. Keeping in mind that such an analysis only covers 
part of the signaling networks involved in heart development, we 
note that many of these cross-talking functional modules include 
signaling pathways known to be coordinated by the primary 

cilium. These signaling modules include TGFβ/BMP signaling, 
Fibroblast Growth Factor Receptor (FGFR) signaling, PDGFR 
signaling, Notch signaling, EGFR signaling and Wnt signaling 
among others.

Because so many different signaling systems are associated 
with primary cilia,20,21,31,171,172,175,200,213-216 we suggest that primary 
cilia may function as signaling hubs in the spatiotemporal cross-
talking between diverse signaling networks during heart devel-
opment. Future work should therefore focus on how primary 
cilia are involved in the integration and cross-talking between 
different signaling networks and how this may impact on dif-
ferent stages of heart development. Here, it will be important to 
differentiate between signaling involving cilia in the node and 
signaling involving primary cilia in cardiac tissues at later devel-
opmental stages. Thus, it will be important to include analysis 
with conditional knockout of primary cilia from various heart 
tissues at different time points and investigate how cardiac pri-
mary cilia function in the progressive differentiation, morpho-
genesis and maturation of the heart independent of nodal cilia 
and early L-R specification.
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